B.A./B.Sc. 5th Semester (Honours) Examination, 2023 (CBCS) Subject : Mathematics Course : BMH5DSE11 (Linear Programming)

Time: 3 Hours

Full Marks: 60

 $2 \times 10 = 20$

1 + 1

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Notation and symbols have their usual meaning.

1. Answer any ten questions:

- (a) Define basic feasible solution of an LPP.
- (b) What do you mean by convex hull and convex polyhedron?
- (c) Is the following set A in R^2 is convex? Justify with your reason. $A = \{(x, y) : x > 0, y > 0 \text{ and } xy \le 1\}$
- (d) Find the extreme points of the set $A = \{(x, y): |x| \le 2, |y| \le 2\}$.
- (e) What do you mean by alternative optima of an LPP?
- (f) Find a basic feasible solution of the following system of equations:

$$x_1 + 4x_2 - x_3 = 3$$

$$5x_1 + 2x_2 + 3x_3 = 4$$

(g) Test whether the following set of vectors are linearly dependent or not.

 $\{(3,0,2), (7,0,9), (4,1,2)\}$

(h) Find the condition under which the following game problem will be a fair game. $\begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$ where a, b, c, d are all ≥ 0 .

(i) Determine the value of θ so that the game with following payoff matrix is strictly determinable.

	Player B				
	θ	6	2		
Player A	- 1	θ	- 7		
	-2	4	θ		

- (j) Give an example of symmetric game and find its value.
- (k) Prove that the solution of a transportation problem with 2 origins and 3 destinations is bounded. 1 + 1

Please Turn Over 360

29642

- (1) Find the dual of the primal problem given by Minimize $Z = -6x_1 - 8x_2 + 10x_3$ subject to
 - $x_1 + x_2 x_3 \ge 2,$ $2x_1 - x_3 \ge 1,$ $x_1, x_2, x_3 \ge 0.$
- (m) State complementary slackness theorem.
- (n) "All boundary points are not necessarily extreme points."— Justify this statement with example.
- (o) Prove that if a linear programming problem has two feasible solutions, then it has an infinite number of feasible solution.
- 2. Answer any four questions:

5×4=20

- (a) Use Simplex method to obtain inverse of the matrix $\begin{bmatrix} 5 & -2 \\ -1 & 4 \end{bmatrix}$.
- (b) Solve the following linear programming problem:

Maximize
$$Z = 3x_1 + 4x_2$$

Subject to
$$x_1 - x_2 \ge 0,$$

$$-x_1 + 3x_2 \le 3$$

and
$$x_1, x_2 \ge 0,$$

(c) Use Dual simplex method to solve the LPP:

Minimize
$$Z = 10x_1 + 6x_2 + 2x_3$$

subject to $-x_1 + x_2 + x_3 \ge 1$,
 $3x_1 + x_2 - x_3 \ge 2$
and $x_1, x_2, x_3 \ge 0$.

(d) Use dominance property to reduce the following payoff matrix to 2×2 matrix and hence solve the problem:

		Player A						
		A_1	A_2	A_3	A_4	A_5	A ₆	
	B_1	4	2	0	2	1	1	
	B_2	4	3	1	3	2	2	
Player B	<i>B</i> ₃	4	3	7	-5	1	2	
	B_4	4	3	4	-1	2	2	
	B_5	4	3	3	-2	2	2	

- (e) Prove that any points of a convex polyhedorn can be expressed as a convex combination of its extreme points.
- (f) Prove that the number of basic variables in a transportation problem with 2 origins and 3 destinations is at most 4.

3. Answer any two questions:

 $10 \times 2 = 20$

(i) Use Vogel's Approximation Method to find the initial B.F.S. of the following (a) transportation problem:

	D_1	D_2	<i>D</i> ₃	D_4	a _i
01	1	2	1	4	30
02	3	3	2	1	50
03	4	2	5	9	20
b_j	20	40	30	10	-

(ii) Solve graphically the game whose payoff matrix is given below:

5+5

5+5

	Player B			
		<i>B</i> ₁	B ₂	
	A_1	2	7	
Player A	<i>A</i> ₂	3	5	
	<i>A</i> ₃	11	2	

- (b) (i) Prove that the set of optimal strategies for each player in an $m \times n$ matrix game is a convex set.
 - (ii) Solve the travelling salesman problem:

100		2 _ 2	То		¥	1
		A	В	С	D	Е
	А	ø	6	12	6	4
	В	6	œ	10	5	4
From	С	8	7	8	11	3
	D	5	4	11	8	5
	Е	5	2	7	8	8

(i) Find the maximum value of Z = 6x + 8y. (c)

> subject to $5x + 2y \le 20$ $x + 2y \ge 10$ $x, y \ge 0$

by solving its dual problem.

(3)

(ii) Solve the following assignment problem:

А	В	С	D	E
62	78	50	101	82
71	84	61	73	59
87	92	111	71	81
48	64	87	77	80
	A 62 71 87 48	A B 62 78 71 84 87 92 48 64	A B C 62 78 50 71 84 61 87 92 111 48 64 87	A B C D 62 78 50 101 71 84 61 73 87 92 111 71 48 64 87 77

(d) (i) Solve the following LPP by two phase method:

Maximize z	$= 3x_1 -$	<i>x</i> ₂
subject to	$2x_1 +$	$x_2 \ge 2$
	$x_1 + 3$	$3x_2 \leq 2$
	x_1	≤ 4
and	x_1, x_2	≥ 0

(ii) Is

	D_1	D_2	D_3	D_4
01			50	20
<i>0</i> ₂	55			
03	30	35	r i P	25

an optimal solution of the following transportation problem?

~	-	-
J	т	-

•					
	D_1	D_2	D_3	D_4	a_i
0	6	1	9	3	70
0_1	11	5	2	8	55
02	10	12	4	7	90
b.	85	35	50	45	

If not, modify it to obtain a better feasible solution.

5+5